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The second-order velocity structure tensor of weakly anisotropic strong turbulence is
decomposed into its SO(3) invariant amplitudes dj(r). Their scaling is derived within
a scaling approximation of a variable-scale mean-field theory of the Navier–Stokes
equation. In the isotropic sector j = 0 Kolmogorov scaling d0(r) ∝ r2/3 is recovered.
The scaling of the higher j amplitudes (j even) depends on the type of the external
forcing that maintains the turbulent flow. We consider two options: (i) for an analytic
forcing and for decreasing energy input into the sectors with increasing j, the scaling
of the higher sectors j > 0 can become as steep as dj(r) ∝ rj+2/3; (ii) for a non-analytic
forcing we obtain dj(r) ∝ r4/3 for all non-zero and even j.

1. Introduction
In the last few decades scaling in fully developed turbulence has mainly been

analysed in terms of the longitudinal velocity structure functions (Monin & Yaglom
1975; Frisch 1995). Meanwhile experimental and numerical evidence has accumulated
that, at least for finite Reynolds numbers, the transversal structure functions scale
differently (Noullez et al. 1997; Grossmann, Lohse & Reeh 1997; Dhruva, Tsuji &
Sreenivasan 1997; Chen et al. 1997; van de Water & Herweijer 1999). Two questions
immediately arise: (i) what is the proper decomposition of the velocity structure
tensor into invariant amplitudes, and (ii) what is the origin of their different scalings?

In addressing the first question, Arad, L’vov & Procaccia (1999b) suggested decom-
posing the second-order velocity structure tensor into the amplitudes djmq(r) of the
irreducible SO(3) representation,

Dik(r) = 〈〈vi(r, t)vk(r, t)〉〉 =
∑
jmq

djmq(r)B
jmq
ik (r̂), (1.1)

reflecting the rotational symmetry of the Navier–Stokes equation. Here, vi(r, t) =
ui(x+ r, t)− ui(x, t) is the velocity difference, the brackets 〈〈. . .〉〉 denote the ensemble

average and, as in Arad et al. (1999b), the tensors Bjmqik (r̂) are combinations of the
spherical harmonics Yjm(r̂) and operations like ∂ri , rk , δik , the index q labels the
different types of such combinations, and r̂ denotes the unit vector in the direction of
r, r̂ = r/r. Non-zero values of j contribute to Dik if the turbulence is not isotropic.

In Arad et al. (1998), Arad et al. (1999a), Kurien & Sreenivasan (2000), Kurien et
al. (2000), and Kurien & Sreenivasan (2001) the scaling exponents of the amplitudes
dj(r) were extracted from experimental as well as numerical data. For j = 0 a scaling
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exponent close to the Kolmogorov value 2/3 was recovered, but for j = 2 values
close to 4/3 were found. This scaling exponent corresponds to a power spectrum
∼ k−7/3, a behaviour first suggested for shear flow by Lumley (1967) through a
dimensional argument. Experimental evidence for it was found by Wyngaard & Cote
(1972) and, later, also by Saddoughi & Veeravalli (1994), among others. For higher
j > 2 Biferale & Toschi (2001) have found even larger scaling exponents from the
analysis of numerical data, namely 1.67–1.7 for j = 4 and 3.3–3.4 for j = 6.

Here we aim at analytically calculating the mean field part of the scaling expo-
nents of the j-amplitudes from the Navier–Stokes equation for weakly anisotropic,
homogeneous turbulence. We employ the variable-scale mean-field theory of Effinger
& Grossmann (1987), i.e. we disregard intermittency corrections.

2. The Effinger–Grossmann mean field theory for the weakly anisotropic
case

The main idea in Effinger & Grossmann (1987) is to decompose the velocity field
into a smooth part u(r)

i , defined as spatial average over a sphere with variable radius
r and therefore containing only scales larger than r, and a strongly varying part
ũ

(r)
i , to which the scales smaller than r contribute. Within the Effinger–Grossmann

theory, not only can the K41 r-scaling exponent 2/3 of the structure function be
analytically calculated from the Navier–Stokes equation, but also the Kolmogorov
constant b = 6.3. As we now assume (weak) anisotropy of the flow, we introduce
an average which reflects its scale r and, in addition, the direction of the averaging.
Therefore, for each component, we choose an average over a line in the r̂-direction
with the length 2r,

u
(r)
i (x, t) =

1

2r

∫ r

−r
ui(x+ yr̂, t)dy ≡ 〈ui(x+ yr̂, t)〉(r)y . (2.1)

Correspondingly, ũ(r)
i (x, t) = ui(x, t) − u(r)

i (x, t). The upper index r denotes that these
averages not only depend on the scale r, but also on the direction r̂ of averaging,
thus on the full vector r. The lower index y indicates the averaged variable. As in
the original spherical averaging case there is a close relation between the second
order moments of u(r)

i and the structure tensor Dik(r): 〈〈u(r)
i u

(r)
k 〉〉 = 〈〈uiuk〉〉− 1

2
〈〈Dik(y1 +

y2)〉(r)y1
〉(r)y2

. This relation is crucial for the method. For simplicity we use the abbreviation
y = yr̂. In the above double average y1 is thus parallel to y2.

Eliminating the pressure p gives a non-local term involving the Green function G(x).
Inserting the velocity decomposition into the Navier–Stokes equation and averaging,
we obtain an equation of motion for the large-scale (‘superscale’) velocity:

∂tu
(r)
i (x, t) = −u(r)

j (x, t)∂xj u
(r)
i (x, t)− 〈ũ(r)

j (x+ yr̂)∂xj ũ
(r)
i (x+ yr̂)〉(r)y

+ν∆xu
(r)
i (x, t) + f

(r)
i (x, t)

+

∫
d3x′G(x′)∂x′i{u(r)

k|l(x+ x′, t)u(r)
l|k(x+ x′, t)

+〈ũ(r)
k|l(x+ x′ + yr̂, t)ũ(r)

l|k(x+ x′ + yr̂, t)〉(r)y }. (2.2)

We use the abbreviation ui|k(x, t) := ∂xkui(x, t), etc.; ∆x denotes the Laplacian with
respect to x, ν is the kinematic viscosity, and fi an external forcing maintaining the
turbulent flow. In Effinger & Grossmann (1987) isotropic forcing is considered. Here,
by proper choice of fi we explicitly introduce anisotropy. It implies an anisotropic
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energy input whose characteristic details will be discussed later. Subtracting (2.2)
from the Navier–Stokes equation gives an equation for the ‘subscale’ velocity ũ(r)

i . Its
formal solution can be found by time integrating along a Lagrangian path x(t′; z, t)
of a fluid particle which at time t′ = t is at the position x = z. Also, from equation
(2.2) we can derive an energy balance equation for the superscales.

The central approximation of the mean-field theory of Effinger & Grossmann (1987)
is that the small-scale flow is statistically independent of the smooth large-scale one.
Therefore, in higher-order moments we factorize the u(r) from the ũ(r), e.g.

〈〈ũ(r)ũ(r)u(r)u(r)〉〉 ' 〈〈ũ(r)ũ(r)〉〉〈〈u(r)u(r)〉〉.
Physically this means that the large scales feel the small ones as a kind of eddy
viscosity. Note again that this factorization excludes intermittency effects. Another
assumption is that in the time integration along a Lagrangian path of a fluid particle
the slow t′-dependence of the superscales u(r) is neglected since the subscales ũ(r)

fluctuate on a much shorter time scale.
The resulting contributions to the energy balance can be expressed in terms of the

structure function tensor Dik(r). To simplify the expressions we introduce the second-
order moment of the superscale velocity, R(r)

ik (r′), and the time-integrated correlation

function of the subscale eddies, N(r)
ik (r′). Both can be expressed in terms of the structure

function tensor:

R
(r)
ik (r′) := 〈〈〈u(r)

i (x, t)u(r)
k (x+ y + r′, t)〉〉〉(r)y

= 〈〈uiuk〉〉 − 1
2
〈〈〈Dik(r′ + y1 + y2 + y3)〉(r)y1

〉(r)y2
〉(r)y3
,

N
(r)
ik (r′) :=

∫ t

−∞
dt′〈〈ũ(r)

i (z, t)ũ(r)
k (x(t′; z, t) + r′, t′)〉〉.

N
(r)
ik probes the (Lagrangian) dynamics and can be considered as an eddy transport

coefficient for the superscale flow. To obtain a closed set of equations we express
N

(r)
ik in terms of equal time and therefore stationary static objects like the structure

tensor Dik(r). This is achieved by continued fraction projector expansion (Grossmann
& Thomae 1982; Daems et al. 1999). With the static subscale correlation C̃

(r)
ik (x′) :=

〈〈ũ(r)
i (x, t)ũ(r)

k (x+x′, t)〉〉 and the frequency matrix Γ̃ (r)
ik (x′) := −〈〈ũ(r)

i (z, t)dt′ ũ
(r)
k (x(t′; z, t)+

x′, t′)〉〉|t′=t we can write N(r)
ik in a 1-pole approximation as

N
(r)
ik (x′) = C̃

(r)
ij (x′)(Γ̃ (r)(x′))−1

jl C̃
(r)
lk (x′).

The tensor C̃ and the frequency matrix Γ̃ can be expressed in terms of the structure
function tensor

C̃
(r)
ik (x′) = − 1

2
〈〈Dik(x′ + y1 + y2)〉(r)y1

〉(r)y2
+ 〈Dik(x′ + y)〉(r)y − 1

2
Dik(x

′),

Γ̃
(r)
ik (x′) = 2

3
εδik − 2ν〈∆yDik(y)〉(r)y

+ν〈〈∆y1
Dik(y1 + y2)〉(r)y1

〉(r)y2
+ ν∆x′C̃

(r)
ik (x′).

For more details compare with the case of isotropic turbulence in Effinger & Gross-
mann (1987). In a general anisotropic case the dissipation matrix elements ν〈〈u2

i|j〉〉
might be different for different i, j. Here, in the weakly anisotropic case, we assume
that the anisotropy corrections are small on the scales where dissipation takes place.
Therefore we insert one total dissipation rate per unit mass ε = ν〈〈ui|jui|j〉〉 (summation
implied).
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The superscale energy balance equation contains three contributions for the losses.
Ed(r) describes the direct viscous energy dissipation by the superscale eddies. The
other two, consisting of a local and non-local part of Et(r), account for the energy
transfer from the large to the small scales. These losses are balanced by the energy
input rate Ein(r) caused by the external forcing:

Ed(r) + Et,lo(r) + Et,nolo(r) = Ein(r). (2.3)

As in Effinger & Grossmann (1987) the three different contributions can be written

Ed(r) = 1
2
ν〈〈∆y1

Dii(y1 + y2)〉(r)y1
〉(r)y2
, (2.4)

Et,lo(r) = − 1
2
N

(r)
jk (x′ = 0)∂x′j ∂x′kR

(r)
ii (x′)|x′=0, (2.5)

Et,nolo(r) = −
∫

d3x′G(x′)∂x′i ∂x′j{∂x′jN(r)
lk (x′)− ∂x′lN(r)

jk (x′)}∂x′kR(r)
il (x′)

+

∫
d3x′G(x′)∆x′(∂x′iN

(r)
lk (x′))∂x′kR

(r)
il (x′). (2.6)

The energy input rate is given by

Ein(r) = 〈〈u(r)
i f

(r)
i 〉〉. (2.7)

Note that in contrast to the isotropic case all terms in the energy balance (2.3) now
depend on the vector r, not merely on its absolute value, the scale r.

Equation (2.3) together with (2.4)–(2.7) constitute a set of integro -differential
equations for the tensor Dik(r). Now, anisotropy is assumed to be small. More
precisely, in a SO(3)-decomposition of Dik(r) the j-amplitudes are assumed to decrease
in magnitude for higher angular wavenumber j. Then (2.3) can be solved order by
order in j, to give the structure function amplitudes dj(r). They will not be universal
but depend on the anisotropy of the forcing. However, what we may hope is that the
scaling of the individual j-amplitudes is universal. To analyse this, it is sufficient to
focus on the scaling behaviour of the various contributions in (2.3).

Scalewise, multiple spatial averages can be reduced to first-order ones, e.g. Ed(r) ∼
ν/2〈∆yDii(y)〉(r)y , and local and non-local energy transfer rates scale with the same
exponent. Here and in the following ∼ has the meaning of ‘scalewise equal’. Thus the
energy balance equation scalewise simplifies to

Ein(r) ∼
〈ν

2
∆yDii(y)

〉(r)

y
+
〈α
ε
Djl(r)Dlk(r)∂yj ∂ykDii(y)

〉(r)

y
.

Here, ε is the mean energy dissipation rate per unit mass, and the constant α takes
into account the relative weight of the transport terms, Et in (2.3). Scalewise this
equation can be simplified even further:

Ein(r) ∼ 1

2

(
ν +

β

ε
D(r)D(r)

)
∆D(r), (2.8)

where β takes into account the missing constants of proportionality. DD and ∆D stand
for the tensorial products of two structure function tensors and of a second-order
spatial derivative of the structure function tensor, respectively.

3. SO(3)-decomposition
Taking into account the full tensorial character of Dik(r) (equation (1.1)) complicates

the resulting equation. Therefore, for simplicity, we assume that the r-scaling behaviour
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remains the same. As we are interested at present in the scaling exponents only, we
disregard the tensorial character of the structure function (i.e. drop the index q of
djmq(r)) and expand into spherical harmonics:

D(r) ' d00(r)Y00 +
∑
m

d2m(r)Y2m(r̂) +
∑
m

d4m(r)Y4m(r̂) + . . .

∼∑
j

dj(r)
∑
m

Yjm(r̂). (3.1)

Here, we assume that the scaling behaviour of djm(r) is – for fixed j – the same for
all m, and therefore simply write dj(r). We analogously expand the energy input rate
into spherical harmonics:

Ein(r) =
∑
j,m

ejm(r)Yjm(r̂) ∼∑
j

ej(r)
∑
m

Yjm(r̂), (3.2)

where

ejm(r) =

∫
d(cos θ)dϕ Y ∗jm(r̂)Ein(r). (3.3)

Then we insert the SO(3)-decomposition (3.1) of the structure function and the
corresponding expansion (3.2) of the energy input rate into equation (2.8).

From now on we only focus on the inertial subrange (ISR), η � r � L, where η is
the Kolmogorov length, in which the second term on the right-hand side of equation
(2.8) dominates. Thus the energy balance equation is∑

j

ej(r)
∑
m

Yjm(r̂) ∼ β

r2

(∑
j

dj(r)
∑
m

Yjm(r̂)

)3

. (3.4)

Projecting equation (3.4) on the different j-sectors and taking into account only the
first three j (j = 0, 2, 4) yields three nonlinear equations for d0(r), d2(r) and d4(r):

e0(r)r
2 ∼ β[A000,0(d0(r))

3 + 3A022,0d0(r)(d2(r))
2 + 3A044,0d0(r)(d4(r))

2 + A222,0(d2(r))
3

+3A224,0(d2(r))
2d4(r) + 3A244,0d2(r)(d4(r))

2 + A444,0(d4(r))
3], (3.5a)

e2(r)r
2 ∼ β[3A002,2(d0(r))

2d2(r) + 3A022,2d0(r)(d2(r))
2 + 3A044,2d0(r)(d4(r))

2

+6A024,2d0(r)d2(r)d4(r) + A222,2(d2(r))
3 + 3A224,2(d2(r))

2d4(r)

+3A244,2d2(r)(d4(r))
2 + A444,2(d4(r))

3], (3.5b)

e4(r)r
2 ∼ β[3A004,4(d0(r))

2d4(r) + 3A022,4d0(r)(d2(r))
2 + 3A044,4d0(r)(d4(r))

2

+6A024,4d0(r)d2(r)d4(r) + A222,4(d2(r))
3 + 3A224,4(d2(r))

2d4(r)

+3A244,4d2(r)(d4(r))
2 + A444,2(d4(r))

3]. (3.5c)

Here, Aj1j2j3 ,j4 =
∑

m1 ,m2 ,m3 ,m4

∫
d(cos θ)dϕY ∗j4m4

Yj1m1
Yj2m2

Yj3m3
. The Aj1j2j3 ,j4 can have

either sign.
To extract the scaling laws for the different dj(r), equations (3.5) have to be solved.

But before doing so, we have to specify the energy input rate Ein(r), equation (2.7),
which depends on the external forcing f(r)

i .

4. Anisotropic forcing
In the isotropic and homogeneous case Ein(r) = Ein is a scale-independent constant

(Effinger & Grossmann (1987)). The reason is the following. While the superscale
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Figure 1. Scaling behaviour of the amplitudes of the second-order structure function d0(r), d2(r) and
d4(r), for an analytic forcing. (a) Strong isotropic forcing together with weak anisotropy corrections,
e0/ε = 0.89, e2/ε = 0.1, e4/ε = 0.01. (b) Strong anisotropic forcing: the first anisotropic sector j = 2
dominates the energy input, e0/ε = 0.001, e2/ε = 0.989, e4/ε = 0.01. This might already reach the
limits of our assumptions regarding weak anisotropy. The dip of the d0-curve originates from a
change of sign of d0(r).

velocity field u
(r)
i contains all scales larger than r, the forcing f(r)

i has the outer scale
L only. For each r 6 L the complete forcing is included in the same and therefore
r-independent way. Of course, Ein = ε. In the present case, however, the forcing has
to provide an anisotropic flow. As a consequence we shall find that f(r)

i has to depend
on all scales r, implying that the energy input rate will also depend on all r.

We will discuss two different classes of anisotropic flows: a general analytic forcing
and a non-analytic forcing. For both we can determine the scaling behaviour with
dimensional arguments.

4.1. Analytic forcing

Let us assume that the forcing fi(x) ∼ aik · r sin (k · x) and the velocity profile
ui(x) ∼ bik · r sin (k · x) depend on one input wavenumber k only. They are analytic
in the components of position x and the scale vector r. To fulfil the incompressibility
condition, ∂ifi = 0 and ∂iui = 0, the vectors ai and bi must be chosen as aiki =
biki = 0. Then, applying the y-average defined in equation (2.1) yields u(r)

i ∼ f
(r)
i ∼

[cos (k · (x+ r))− cos (k · (x− r))]. Therefore

Ein(r) ∼ 〈〈(cos (k · (x+ r))− cos (k · (x− r)))2〉〉 = 1− cos (2krξ) (4.1)

with ξ = cos θ, the projection on the z-axis defined by k̂. A power series expansion
of Ein(r) in the variable rξ inserted into equation (3.3) implies (because ξn ⊥ Yjm for
all n < j) that ejm ∼ rj plus higher powers.

We now solve equations (3.5) and extract the power laws for the different dj(r).
Figure 1 shows the solutions of (3.5). In (a) the isotropic part of the energy input e0

is the largest one, and the anisotropy contributions are small corrections. In this case,
over the whole calculated range 10−4 6 r/L 6 1 the dj(r) scale as

dj(r) ∼ rj+2/3. (4.2)

We can see this scaling behaviour easily from equations (3.5): since d4 � d2 � d0,
the dominating term on the right hand side of equation (3.5a) is A000,0(d0)

3. It is
balanced by e0r

2. Therefore, d0 ∼ r2/3. Then, in equations (3.5b, c) the leading terms
A002,2(d0)

2d2 and A004,4(d0)
2d4 are balanced by e2r

2 ∼ r4 and e4r
2 ∼ r6, respectively.
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Therefore, we expect d2 ∼ r8/3 and d4 ∼ r14/3. Though for j = 0 we recover the
mean-field scaling of the isotropic amplitude of the structure function d0 ∼ r2/3,
as in Effinger & Grossmann (1987), the result for the j = 2 sector is at variance
with the experimental finding by Kurien et al. (2000), who found a scaling exponent
close to 4/3. If, on the other hand, we chose a strongly anisotropic energy input
with e2 � e0, e4 (in which case the assumption of weak anisotropy of course breaks
down), then the r-scaling range with dj(r) ∼ rj+2/3 becomes smaller, while at larger
values of r a new scaling range dj ∼ r4/3 with the same exponent 4/3 for all j
emerges, see figure 1(b). For j = 2 this finding is now consistent with the experimental
observations by Kurien et al. (2000). However, it is inconsistent with the exponent
2/3 to be expected for the j = 0 amplitude. In summary, the analytic energy input
does not seem to describe the experimental findings. We therefore now explore the
option of non-analytic forcing.

4.2. Non-analytic forcing

We consider a shear flow with its shear in the 3-direction. Then the three f-components
are different. We decompose the velocity ui and the forcing fi into an isotropic (iso)
and a (smaller) anisotropic (an) part: ui = u

(iso)
i + u

(an)
i , fi = f

(iso)
i + f

(an)
i . Then, at first

order of anisotropy

〈〈u(r)
i f

(r)
i 〉〉 ' 〈〈u(r)

i f
(r)(iso)
i 〉〉+ 〈〈u(r)(iso)

i f
(r)(an)
i 〉〉 = E

(iso)
in + E

(an)
in (r). (4.3)

Repeating the arguments at the beginning of §4 for the isotropic case the first term
on the right-hand side does not depend on r, i.e. E(iso)

in ∼ r0. Namely, since f(r)(iso)
i has

scales of order L only, the smaller scales in the products with u(r)(iso)
i or u(r)(an)

i cannot
contribute, irrespective of their degree of isotropy. The second term, however, will
depend on r and introduces anisotropy.

Let us determine E(an)
in (r) by scaling arguments. The flow profile in shear flow is

generated by the boundary conditions: one plate is moving with velocity U, the other
one is at rest. These boundary conditions have to be mimicked by the forcing f in an
infinitely extending flow. The linear mean velocity profile (U/L)z (and therefore also
the corresponding f) has Fourier coefficients on all scales,

u(an)(k) =
U

L2

∫ L

−L
dz zeikz = 2iU

(
sin kL

k2L2
− cos kL

kL

)
.

In the case of large k, i.e. k−1 ∼ z � L, the second term dominates. We therefore
asymptotically find

u(an)(k) ∼ cos kL

kL
∼ 1

k
∼ z = r cos θ. (4.4)

Incidentally, a parabolic velocity profile as in pipe flow, (U/L2)z2, gives the same
asymptotic scaling, u(an)(k) ∼ (sin kL)/kL ∼ 1/k ∼ z for large k.

Next, we determine the r-dependence of f(an). From the Navier–Stokes equation we
have ∂u/∂t = · · · + f. Therefore, the dimension and r-scaling of f must correspond
to that of u/τ, where τ is the r-eddy turnover time. In the isotropic case the turnover
time τ scales like τ(r) ∼ r/u(r) ∼ r/r1/3 ∼ r2/3. We use the r-dependence of the
anisotropic velocity field u(an)(r) together with that of the isotropic turnover time τ(r)
to estimate the scaling of the anisotropic forcing f(an) in first order. Since u(an) behaves
as u(an) ∼ r cos θ according to equation (4.4), we have f(an) ∼ r(cos θ)/r2/3 ∼ r1/3 cos θ.
Note that this anisotropic forcing scales as the isotropic velocity u(iso) ∼ r1/3. Then
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Figure 2. Scale dependence of the amplitudes d0(r), d2(r) and d4(r) of the second-order structure
function, for a non-analytic forcing. The forcing is assumed to be predominantly isotropic with
small anisotropy corrections, e0/ε = 0.89, e2/ε = 0.1, e4/ε = 0.01.

both factors of E(an)
in (r) in (4.3) not only contain all scales, but also the same power-law

exponents. We therefore find

E
(an)
in (r) ∼ r2/3 cos θ. (4.5)

The forcing still has an additional factor g(θ, ϕ), which can be chosen such that the
incompressibility constraint ∂ifi = 0 is fulfilled. Knowing now the scaling behaviour of
the energy input rate, we proceed to expand it into spherical harmonics (see equation
(3.2)),

Ein(r) = E
(iso)
in + r2/3Ẽ

(an)
in (r̂) =

∑
j,m

ejm(r)Yjm(r̂).

Here, e00(r) equals E(iso)
in , while for j > 0 the input rate amplitudes are ejm(r) =∫

d(cos θ)dϕ Y ∗jm(r̂)E(an)
in (r). Here the r- and ξ-dependences are not coupled as rξ, in

contrast to the analytic case treated above. Thus there is no j-dependence of the
leading r-power of the input amplitudes ejm. The lowest j-value projection ejm(r) of
the anisotropy correction, in general j = 2, and all the higher ones, have the same
power law, here according to (4.5) ∼ r2/3. The physics behind this decoupling of the r-
and ξ-dependence is that a shear profile – in contrast to a single input wavenumber
k – contains all wavenumbers. The r-dependence is even non-analytical. Hence, no
expansion in rξ with only integer powers holds.

From equations (3.5) and with d4 � d2 � d0, we find that the leading terms in
equations (3.5b,c) are (d0)

2d2 ∼ r8/3 and (d0)
2d4 ∼ r8/3. With d0 ∼ r2/3 from equation

(3.5a) this leads to d2 ∼ d4 ∼ r4/3. The solutions of equations (3.5) for this non-analytic
forcing describing shear flow are shown in figure 2. For j = 0 we recover the isotropic
scaling of the structure function d0(r) ∼ r2/3. However, for all higher amplitudes we
obtain

dj(r) ∼ r4/3 (4.6)

in a wide range of r. We have shown only the case where the isotropic forcing
dominates, e0 � e2 � e4. If the anisotropic contributions to the energy input increase,
the r-range of scaling behaviour d0 ∼ r2/3 and dj ∼ r4/3 for all j > 2 is again shifted
towards smaller r as in the case of analytic forcing.

As was argued by L’vov & Procaccia (1995a, b, 1996), in the exact resummation
theory of Navier–Stokes turbulence no infrared (IR) divergence occurs if all j-
factor scaling exponents ζj are bounded by 4/3. Otherwise IR-divergences cannot
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be excluded. Our results in the non-analytic case therefore exclude IR-divergences
while in the previous analytic case they cannot be ruled out. Another possibility for
controlling these IR divergences, in spite of second-order moment exponents being
larger than 4/3, is by limiting the forcing to scales smaller than L, as recently shown
in Kraichnan-model-type dynamics for a vector field, see Procaccia & Arad (2001).

5. Summary
Within a variable-scale mean-field theory of the Navier–Stokes equation we have

derived the scaling exponents of the different j-amplitudes of the SO(3)-decomposition
of the second-order structure function for weakly anisotropic turbulent flow. The
limitation of this approach is its mean-field character. Clearly, intermittency effects
cannot be captured, but we consider those to be small for second-order moments,
to which the method is limited anyway. In the isotropic sector j = 0 we recover the
classical scaling behaviour ∼ r2/3. The higher-order contributions, i.e. the anisotropic
parts of the flow field, can be calculated order by order in Yjm. They yield, for all
j, the same mean-field scaling r4/3 for a non-analytic forcing, whereas the scaling is
rj+2/3 for an analytic type of forcing. The non-analytic forcing might be more general,
and therefore valid for a larger variety of anisotropic flows. Moreover, only the results
for the non-analytic forcing are consistent with exisiting experimental measurements
for the j = 0 and j = 2 amplitudes.
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